Al esfuerzo F considerado en el post “Barras conductoras: Efectos electrodinámicos
en caso de cortocircuito” link: http://imseingenieria.blogspot.com.es/2017/12/barras-conductoras-efectos.html,
se le denomina esfuerzo dinámico por cuanto es un esfuerzo mecánico pero, en
realidad, es un esfuerzo determinado por el nivel o intensidad que alcanza la
corriente, independientemente de su duración o evolución; es igual que se trate
de corriente continua o alterna. Se trata pues, en realidad de un esfuerzo
estático.
Toda pletina rígida situada entre soportes
tiene una frecuencia propia de oscilación que depende del material de la
pletina, de sus dimensiones y de la separación entre soportes.
Si esta frecuencia coincide con la frecuencia
de la red o de algunos de sus armónicos, la pletina puede entrar en resonancia
y llegar a la destrucción de la canalización.
La frecuencia propia de oscilación de una
pletina rígida fijada por sus extremos, viene dada por la fórmula:
Siendo:
n:
Frecuencia propia de oscilación, en períodos por segundo.
E: Módulo
de elasticidad, en kg/cm2
g:
Peso de la pletina, en kg/cm de largo.
J:
Momento portante o de inercia de la sección de la barra, en cm4.
h:
Largo libre de pletina entre soportes, en cm.
Para pletinas rectangulares o paquetes de
pletinas:
Siendo:
b:
ancho de la barra, en cm.
a:
alto de la barra, en cm.
δ :
densidad de la barra, g/cm3.
Introduciendo
estas expresiones en la ecuación inicial, esta se transforma, para barras
rectangulares, en:
De
esta igualdad se deduce:
Para
pletinas rectangulares de Cu:
Para
pletinas rectangulares de Al:
Ejemplos
Pletina
de Cu, de b = 1 cm, a = 10 cm, h = 100 cm
La
frecuencia propia de oscilación valdrá:
Valor
notablemente por debajo de los 50 Hz de la red. No es de esperar ninguna
resonancia.
La
misma pletina pero con soportes situados a h = 85 cm.
Valor
cercano a los 50 Hz de la red, son de prever problemas de resonancia.
No hay comentarios:
Publicar un comentario